
Hanbing Fang Homework 8 MAT324: Real Analysis

Problem 7B,6
Suppose (X,S, µ) is a measure space and 0 < p < 1. Prove that

∥f + g∥pp ≤∥f∥pp+∥f∥pp

for every S-measurable function f, g : X → F .

Proof. Note that (a+ b)p ≤ ap + bp and then the result follows.

Problem 7B,11
Suppose 1 ≤ p ≤ ∞. Prove that

{(a1, a2, . . .) : ak ̸= 0 for every k ∈ Z+}

is not an open set of lp.

Proof. We only prove the case of p = 2. Other cases are the same. Take ak = 1
k . Denote it by a. We need to

show for any ϵ > 0, the ball B(a, ϵ) contains elements which are not in the above set. Take N > 1
ϵ . Choose

b such that for k ̸= N, bk = ak; k = N, bk = 0. Then ∥a− b∥p ≤ 1
N ≤ ϵ.

Problem 7B,15
Let

c0 = {(a1, a2, . . .) : lim
k→∞

ak = 0}.

Give c0 the norm inherited from l∞. Prove that

• c0 is a Banach space.

• Prove that the dual space of c0 can be identified as l1.

Proof. • It is easy to check that c0 is closed subset of l∞ so it is a Banach space.

• First given an element b = (b1, b2, . . .), it acts on c0 by: for any a = (a1, a2, . . .) ∈ c0, b(a) =
∑∞

k=1 akbk.
It is then easy to check that this is a lnear bounded functional on c0 which the norm is bounded by
∥b∥1. Conversely, given a bounded linear functional f on c0. For any positive integer k, set ek ∈ c0
whose only non-zero entry is the k-th entry and the value is 1. Then ∥ek∥∞ = 1. Let bk = f(ek). Note
for any positive integer m,

m∑
k=1

|bk| = f(

m∑
k=1

sign(f(ek))ek) ≤∥f∥

where we have used that ∥
∑m

k=1 sign(f(ek))ek∥∞ = 1. Thus b = (b1, b2, . . .) ∈ l1 and we can check by
linearity and limit argument that f(a) =

∑∞
k=1 akbk.

Problem 8A,1
Let V be the lnear space of bounded continuous function from R to F. Let r1, r2, . . . be a list of rational
numbers. Define

< f, g >=

∞∑
k=1

f(rk) ¯g(rk)

2k
.

Show that < ., . > is an inner product on V .

Proof. By the boundedness of f, g, the series is well defined. Then it is to check by definition that this
defines an inner product.
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Problem 8A,5
Prove that

16 ≤ (a+ b+ c+ d)(
1

a
+

1

b
+

1

c
+

1

d
)

for any positive a, b, c, d with equality holds when a = b = c = d.

Proof. Only need to note the following general identity:

(

m∑
k=1

xiyi)
2 = (

m∑
k=1

x2
i )(

m∑
k=1

y2i )− (
∑

1≤i<j≤m

(xiyj − xjyi)
2)

Problem 8A,7
Suppose f, g are elements of an inner product space and ∥f∥ ≤ 1, ∥g∥ ≤ 1. Prove that√

1−∥f∥2
√

1−∥g∥2 ≤ 1− | < f, g > |

Proof. Note that by Cauchy-Schwarz inequality, the right hand side is greater than 1−∥f∥∥g∥. So we only
need to show √

1−∥f∥2
√

1−∥g∥2 ≤ 1−∥f∥∥g∥

Take square of both side and rearrange the term, this is equivalent to

2∥f∥∥g∥ ≤∥f∥2∥g∥2.

This completes the proof.

Problem 8A,15
Suppose f, g, h are elements of an inner product space. Prove that

∥h− 1

2
(f + g)∥2 =

∥h− f∥2+∥h− g∥2

2
− ∥f − g∥2

4

Proof. Direct computation by 8.20.

Problem 8B,11
Suppose V is a Hilbert space. A closed half-sapce is a set of the form

{g : Re < g, h >≥ c}

for some h ∈ V, c ∈ R. Prove that every closed convex subset of V is the intersection of all the closed
half-space containing it.

Proof. Let K be an closed convex subset of V and K̄ be the intersection of all the closed half-space containing
it. Obviouly K ⊂ K̄ and K̄ is also a closed convex subset. If there exists p ∈ K̄ − K. Then we can
find an element p1 ∈ K such that ∥p − p1∥ = dist(p,K). Then for any h ∈ K, define the function
f(t) =∥th+ (1− t)p1 − p∥ is a function defined on t ∈ [0, 1] sucht that f attain its minimum at t = 0. Thus
the right derivative of f at 0 is positive. This implies for any h ∈ K

Re < h, p1 − p >≥ Re < p1, p1 − p >
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Thus K lies in the half-space {g : Re < g, p1 − p >≥ Re < p1, p1 − p >}. Note that

Re < p− p1, p1 − p >< 0.

which implies p does not lie in the half-space {g : Re < g, p1 − p >≥ Re < p1, p1 − p >}. This contradiction
finishes the proof.

Problem 8B,13
In the real Bnanach space R2 with norm defined by ∥(x, y)∥∞ = max{|x|, |y|}. Give an example
of closed convex subset U ∈ R2 and z ∈ R such that there exists infinite choice of w ∈ U with
∥z − w∥ = dist(z, U).

Proof. Just take U = [−1, 1]2 and z = (2, 0). Then we can check w can be any (1, t), t ∈ [−1, 1].

Problem 8B,22
Prove that if v is a Hilbert space and T : V → V is a bounded linear map such that the dimension of
range T is 1. Then there exist g, h ∈ V such that for any f ∈ V

Tf =< f, g > h

Proof. It follows easily that kernel of T is of codimensional 1. Take V1 to be the kernel. Then we can find
its orthogonal complement spanned by an unit element g ∈ V . Then for any f ∈ V , f = f1+ < f, g > g
where f1 ∈ V1. So

Tf = T (f1+ < f, g > g) =< f, g > Tg

and this completes the proof.
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