Problem 7B,6

Suppose (X, S, μ) is a measure space and $0<p<1$. Prove that

$$
\|f+g\|_{p}^{p} \leq\|f\|_{p}^{p}+\|f\|_{p}^{p}
$$

for every S-measurable function $f, g: X \rightarrow F$.
Proof. Note that $(a+b)^{p} \leq a^{p}+b^{p}$ and then the result follows.

Problem 7B,11

Suppose $1 \leq p \leq \infty$. Prove that

$$
\left\{\left(a_{1}, a_{2}, \ldots\right): a_{k} \neq 0 \text { for every } k \in Z^{+}\right\}
$$

is not an open set of l^{p}.
Proof. We only prove the case of $p=2$. Other cases are the same. Take $a_{k}=\frac{1}{k}$. Denote it by a. We need to show for any $\epsilon>0$, the ball $B(a, \epsilon)$ contains elements which are not in the above set. Take $N>\frac{1}{\epsilon}$. Choose b such that for $k \neq N, b_{k}=a_{k} ; k=N, b_{k}=0$. Then $\|a-b\|_{p} \leq \frac{1}{N} \leq \epsilon$.

Problem 7B,15

Let

$$
c_{0}=\left\{\left(a_{1}, a_{2}, \ldots\right): \lim _{k \rightarrow \infty} a_{k}=0\right\}
$$

Give c_{0} the norm inherited from l^{∞}. Prove that

- c_{0} is a Banach space.
- Prove that the dual space of c_{0} can be identified as l^{1}.

Proof. - It is easy to check that c_{0} is closed subset of l^{∞} so it is a Banach space.

- First given an element $b=\left(b_{1}, b_{2}, \ldots\right)$, it acts on c_{0} by: for any $a=\left(a_{1}, a_{2}, \ldots\right) \in c_{0}, b(a)=\sum_{k=1}^{\infty} a_{k} b_{k}$. It is then easy to check that this is a lnear bounded functional on c_{0} which the norm is bounded by $\|b\|_{1}$. Conversely, given a bounded linear functional f on c_{0}. For any positive integer k, set $e_{k} \in c_{0}$ whose only non-zero entry is the k-th entry and the value is 1 . Then $\left\|e_{k}\right\|_{\infty}=1$. Let $b_{k}=f\left(e_{k}\right)$. Note for any positive integer m,

$$
\sum_{k=1}^{m}\left|b_{k}\right|=f\left(\sum_{k=1}^{m} \operatorname{sign}\left(f\left(e_{k}\right)\right) e_{k}\right) \leq\|f\|
$$

where we have used that $\left\|\sum_{k=1}^{m} \operatorname{sign}\left(f\left(e_{k}\right)\right) e_{k}\right\|_{\infty}=1$. Thus $b=\left(b_{1}, b_{2}, \ldots\right) \in l^{1}$ and we can check by linearity and limit argument that $f(a)=\sum_{k=1}^{\infty} a_{k} b_{k}$.
\square

Problem 8A,1

Let V be the lnear space of bounded continuous function from \mathbb{R} to \mathbb{F}. Let r_{1}, r_{2}, \ldots be a list of rational numbers. Define

$$
<f, g>=\sum_{k=1}^{\infty} \frac{f\left(r_{k}\right) g\left(\bar{r}_{k}\right)}{2^{k}}
$$

Show that $<., .>$ is an inner product on V.
Proof. By the boundedness of f, g, the series is well defined. Then it is to check by definition that this defines an inner product.

Problem 8A,5

Prove that

$$
16 \leq(a+b+c+d)\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}+\frac{1}{d}\right)
$$

for any positive a, b, c, d with equality holds when $a=b=c=d$.
Proof. Only need to note the following general identity:

$$
\left(\sum_{k=1}^{m} x_{i} y_{i}\right)^{2}=\left(\sum_{k=1}^{m} x_{i}^{2}\right)\left(\sum_{k=1}^{m} y_{i}^{2}\right)-\left(\sum_{1 \leq i<j \leq m}\left(x_{i} y_{j}-x_{j} y_{i}\right)^{2}\right)
$$

Problem 8A,7

Suppose f, g are elements of an inner product space and $\|f\| \leq 1,\|g\| \leq 1$. Prove that

$$
\sqrt{1-\|f\|^{2}} \sqrt{1-\|g\|^{2}} \leq 1-|<f, g>|
$$

Proof. Note that by Cauchy-Schwarz inequality, the right hand side is greater than $1-\|f\|\|g\|$. So we only need to show

$$
\sqrt{1-\|f\|^{2}} \sqrt{1-\|g\|^{2}} \leq 1-\|f\|\|g\|
$$

Take square of both side and rearrange the term, this is equivalent to

$$
2\|f\|\|g\| \leq\|f\|^{2}\|g\|^{2}
$$

This completes the proof.

Problem 8A,15

Suppose f, g, h are elements of an inner product space. Prove that

$$
\left\|h-\frac{1}{2}(f+g)\right\|^{2}=\frac{\|h-f\|^{2}+\|h-g\|^{2}}{2}-\frac{\|f-g\|^{2}}{4}
$$

Proof. Direct computation by 8.20 .

Problem 8B,11

Suppose V is a Hilbert space. A closed half-sapce is a set of the form

$$
\{g: R e<g, h>\geq c\}
$$

for some $h \in V, c \in \mathbb{R}$. Prove that every closed convex subset of V is the intersection of all the closed half-space containing it.

Proof. Let K be an closed convex subset of V and \bar{K} be the intersection of all the closed half-space containing it. Obviouly $K \subset \bar{K}$ and \bar{K} is also a closed convex subset. If there exists $p \in \bar{K}-K$. Then we can find an element $p_{1} \in K$ such that $\left\|p-p_{1}\right\|=\operatorname{dist}(p, K)$. Then for any $h \in K$, define the function $f(t)=\left\|t h+(1-t) p_{1}-p\right\|$ is a function defined on $t \in[0,1]$ sucht that f attain its minimum at $t=0$. Thus the right derivative of f at 0 is positive. This implies for any $h \in K$

$$
R e<h, p_{1}-p>\geq R e<p_{1}, p_{1}-p>
$$

Thus K lies in the half-space $\left\{g: R e<g, p_{1}-p>\geq R e<p_{1}, p_{1}-p>\right\}$. Note that

$$
R e<p-p_{1}, p_{1}-p><0 .
$$

which implies p does not lie in the half-space $\left\{g: R e<g, p_{1}-p>\geq R e<p_{1}, p_{1}-p>\right\}$. This contradiction finishes the proof.

Problem 8B,13

In the real Bnanach space \mathbb{R}^{2} with norm defined by $\|(x, y)\|_{\infty}=\max \{|x|,|y|\}$. Give an example of closed convex subset $U \in \mathbb{R}^{2}$ and $z \in \mathbb{R}$ such that there exists infinite choice of $w \in U$ with $\|z-w\|=\operatorname{dist}(z, U)$.

Proof. Just take $U=[-1,1]^{2}$ and $z=(2,0)$. Then we can check w can be any $(1, t), t \in[-1,1]$.

Problem 8B,22

Prove that if v is a Hilbert space and $T: V \rightarrow V$ is a bounded linear map such that the dimension of range T is 1 . Then there exist $g, h \in V$ such that for any $f \in V$

$$
T f=<f, g>h
$$

Proof. It follows easily that kernel of T is of codimensional 1. Take V_{1} to be the kernel. Then we can find its orthogonal complement spanned by an unit element $g \in V$. Then for any $f \in V, f=f_{1}+<f, g>g$ where $f_{1} \in V_{1}$. So

$$
T f=T\left(f_{1}+<f, g>g\right)=<f, g>T g
$$

and this completes the proof.

